某中学团委组织了“弘扬奥运精神,爱我中华”的知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如下部分频率分布直方图.观察图形给出的信息,回答下列问题:(1)求第四小组的频率,并补全这个频率分布直方图;(2)估计这次考试的及格率(60分及以上为及格)和平均分(保留小数点后2位).
(本小题满分14分)已知圆: 及点,为圆上一动点,在同一坐标平面内的动点M满足:. (Ⅰ)求动点的轨迹的方程; (Ⅱ)设过定点的直线与椭圆交于不同的两点,且为锐角(其中为坐标原点),求直线的斜率的取值范围. (Ⅲ)设是它的两个顶点,直线与相交于点,与椭圆相交于两点.求四边形面积的最大值
(本小题满分13分)已知函数. (Ⅰ)当时,证明:当时,; (Ⅱ)当时,证明:.
(本小题满分13分)某医药公司研制了甲、乙两种抗“ABL病毒”的药物,用若干试验组进行临床对比试验.每个试验组由4位该病毒的感染者组成,其中2人服用甲种药物,另2人服用乙种药物,然后观察疗效.若在一个试验组中,服用甲种药物有效的人数比服用乙种药物有效的人数多,就称该试验组为甲类组.设每为感染者服用甲种药物有效的概率为,服用乙种药物有效的概率为. (Ⅰ)求一个试验组为甲类组的概率; (Ⅱ)观察三个试验组,用X表示这三个试验组中甲类组的个数,求X的分布列和数学期望.
(本小题满分13分)如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,H是CF的中点. (Ⅰ)求证:AF//平面BDH; (Ⅱ)求二面角A﹣FE﹣C的大小.
已知 (Ⅰ)求函数的单调递增区间; (Ⅱ)设,且,求.