已知圆:.⑴直线过点,且与圆交于、两点,若,求直线的方程;⑵过圆上一动点作平行于轴的直线,设与轴的交点为,若向量,求动点的轨迹方程,并说明此轨迹是什么曲线.
已知函数在(1,+∞)上是增函数,且a>0.(1)求a的取值范围;(2)求函数在[0,+∞)上的最大值;
已知双曲线与椭圆有共同的焦点,点在双曲线上.(1)求双曲线的方程;(2)以为中点作双曲线的一条弦,求弦所在直线的方程.
设命题p:(4x-3)2≤1;命题q:x2-(2a+1)x+a(a+1)≤0,若p是q的必要不充分条件,求实数a的取值范围.
已知函数.(1)解不等式;(2)若对于,有.求证:.
在直角坐标系中,直线的参数方程为(t为参数),再以原点为极点,以x正半轴为极轴建立坐标系,并使得它与直角坐标系有相同的长度单位,在该极坐标系中圆C的方程为.(1)求圆C的直角坐标方程;(2)设圆C与直线将于点、,若点的坐标为,求的值.