如图,已知多面体中,⊥平面,⊥平面, ,,为的中点.(1)求证:⊥平面;(2)求二面角的大小.
分别写在六张卡片上,放在一盒子中。 (1)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数的概率;(2)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.
已知函数(1)当时,求函数的单调区间;(2)求函数在区间上的最小值.
已知椭圆的中心在原点,焦点在轴上,椭圆上的点到焦点的距离的最小值为,离心率为.(1)求椭圆的方程;(2)过点作直线交于、两点,试问:在轴上是否存在一个定点,使为定值?若存在,求出这个定点的坐标;若不存在,请说明理由.
已知直角梯形中,, 过 作,垂足为,分别为的中点,现将沿折叠使二面角的平面角的正切值为.(1)求证:平面;(2)求异面直线与所成的角的余弦值;(3)求二面角的大小.
已知函数,数列满足,,.(1)求证:;(2)求证:是递减数列;(3)设的前项和为,与是否有确定的大小关系,如果有给出证明,如果没有给出反例.