设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.(1)求f(π)的值; (2)当-4≤x≤4时,求f(x)的图象与x轴所围成图形的面积;(3)写出(-∞,+∞)内函数f(x)的单调区间.
(本小题满分14分) 从5名女同学和4名男同学中选出4人参加四场不同的演讲,分别按下列要求,各有多少种不同选法? (Ⅰ)男、女同学各2名; (Ⅱ)男、女同学分别至少有1名; (Ⅲ)在(Ⅱ)的前提下,男同学甲与女同学乙不能同时选出.
(本小题满分14分) 已知为复数,和均为实数,其中是虚数单位. (Ⅰ)求复数; (Ⅱ)若复数在复平面上对应的点在第一象限,求实数的取值范围.
设函数,。 ⑴若函数图象上的点到直线距离的最小值是,求的值。 ⑵关于的不等式的解集中的整数恰好有3个,求实数的取值范围。
设函数, ⑴当时,讨论函数的单调性; ⑵若函数仅在处有极值,试求的取值范围。
为了在夏季降温和冬季供暖时减少能源消耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元,该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度(单位:厘米)满足关系:,若不建隔热层,每年能源消耗费用为8万元。设为隔热层建造费用与20年的能源消耗费用之和。 ⑴求的值及的表达式; ⑵隔热层修建多厚时,总费用达到最小,并求最小值.