已知函数在点处的切线方程为.(I)求,的值;(II)对函数定义域内的任一个实数,恒成立,求实数的取值范围.
一厂家向用户提供的一箱产品共10件,其中有2件次品,用户先对产品进行抽检以决定是否接收.抽检规则是这样的:一次取一件产品检查(取出的产品不放回箱子),若前三次没有抽查到次品,则用户接收这箱产品;若前三次中一抽查到次品就立即停止抽检,并且用户拒绝接收这箱产品(1)求这箱产品被用户接收的概率;(2)记抽检的产品件数为,求的分布列和数学期望.
已知在的展开式中,第7项为常数项,(1)求n的值;(2)求展开式中所有的有理项.
已知一袋有2个白球和4个黑球。(1)采用不放回地从袋中摸球(每次摸一球),4次摸球,求恰好摸到2个黑球的概率;(2)采用有放回从袋中摸球(每次摸一球),4次摸球,令X表示摸到黑球次数,求X的分布列和期望.
如图,圆O的直径AB=10,弦DE⊥AB于点H, HB="2" .(1)求DE的长;(2)延长ED到P,过P作圆O的切线,切点为C,若PC=2,求PD的长.
甲、乙两企业,2000年的销售量均为p(2000年为第一年),根据市场分析和预测,甲企业前n年的总销量为,乙企业第n年的销售量比前一年的销售量多.(1)求甲、乙两企业第n年的销售量的表达式;(2)根据甲、乙两企业所在地的市场规律,如果某企业的年的销售量不足另一企业的年销售量的20%,则该企业将被另一企业收购,试判断,哪一企业将被收购?这个情形将在那一年出现?是说明理由。