已知一袋有2个白球和4个黑球。(1)采用不放回地从袋中摸球(每次摸一球),4次摸球,求恰好摸到2个黑球的概率;(2)采用有放回从袋中摸球(每次摸一球),4次摸球,令X表示摸到黑球次数,求X的分布列和期望.
设函数f(x)=-x3+x2+(m2-1)x(x∈R),其中m>0.(1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;(2)求函数f(x)的单调区间.
已知直线l1为曲线y=x2+x-2在点(1,0)处的切线,l2为该曲线的另一条切线,且l1⊥l2.(1)求直线l2的方程;(2)求由直线l1,l2和x轴所围成的三角形面积.
已知曲线上一点P(1,2),用导数的定义求在点P处的切线的斜率.
设复数,若,求实数的值.
设函数,,且.(Ⅰ)求的取值的集合;(Ⅱ)若当时, 恒成立,求实数的取值范围.