已知曲线 (t为参数), (1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;(2)若C上的点P对应的参数为,Q为C上的动点,求中点到直线 (t为参数)距离的最小值。
已知圆C:,点,Q是圆上一动点,AQ的垂直平分线交CQ于点M,设点M的轨迹为E。(1)求E的方程;(2)设P为直线x = 4上不同于点(4,0)的任意一点,D,F分别为曲线E与x轴的左,右两交点,若直线DP与曲线E相交于异于D的点N,证明ΔNPF为钝角三角形.
如图,在直三棱柱ABC—A1B1C1中, . (1)若D为AA1中点,求证:平面B1CD平面B1C1D; (2)若二面角B1—DC—C1的大小为60°,求AD的长.
某批发市场对某种商品的日销售量(单位:吨)进行统计,最近50天的统计结果如下表:
若用样本估计总计,以上表频率为概率,且每天的销售量相互独立:(1)求5天中该种商品恰好有2天的日销售量为1.5吨的概率;(2)已知每吨该商品的销售利润为2千元,表示该种商品两天销售利润的和(单位:千元),求的分布列和数学期望.
在中,内角A, B, C的对边分别为,已知。(1)求的值;(2)若,的周长为5, 求b的长度.
某公司今年年初用25万元引进一种新的设备,投入设备后每年收益为21万元。该公司第n年需要付出设备的维修和工人工资等费用的信息如下图。(1)求;(2)引进这种设备后,第几年后该公司开始获利;(3)这种设备使用多少年,该公司的年平均获利最大?