如图,要计算东湖岸边两景点与的距离,由于地形的限制,需要在岸上选取和两点,现测得,,,,,试求两景点与的距离.
已知函数.(1)若,求函数的单调增区间;(2)若时,函数的值域是[5,8],求,的值.
的内角A、B、C的对边分别为,(1)求B(2)若,,求
已知命题p:,命题q:,若“p且q”为真命题,求实数a的取值范围。
如图,已知点是椭圆的右顶点,若点在椭圆上,且满足.(其中为坐标原点)(1)求椭圆的方程;(2)若直线与椭圆交于两点,当时,求面积的最大值.
为了应对国际原油的变化,某地建设一座油料库。现在油料库已储油料吨,计划正式运营后的第一年进油量为已储油量的,以后每年的进油量为上一年年底储油量的,且每年运出吨,设为正式运营第n年年底的储油量。(其中)(1)求的表达式(2)为应对突发事件,该油库年底储油量不得少于吨,如果吨,该油库能否长期按计划运营?如果可以请加以证明;如果不行请求出最多可以运营几年。(取)