在平面直角坐标系中,已知圆和圆.(1)若直线过点,且被圆截得的弦长为,求直线的方程;(2)设为平面上的点,满足:存在过点的无穷多对互相垂直的直线和,它们分别与圆和圆相交,且直线被圆截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点的坐标.
已知平面区域恰好被面积最小的圆及其内部所覆盖.(Ⅰ)试求圆的方程;(Ⅱ)若斜率为1的直线与圆C交于点、,且,求直线的方程.
解关于的不等式.
(Ⅰ)若,记数列的前n项和为,当时,求;(Ⅱ)若,问是否存在实数,使得中每一项恒小于它后面的项?若存在,求出实数的取值范围
(Ⅰ)当时,求的极值;(Ⅱ)若在区间上是增函数,求实数的取值范围
(1)平面是否垂直于平面?(2)求三棱锥的体积.