已知函数,在同一周期内,当时,取得最大值;当时,取得最小值.(Ⅰ)求函数的解析式;(Ⅱ)若时,函数有两个零点,求实数的取值范围.
(本小题满分14分)如图所示,已知正方形的边长为2,.将正方形沿对角线折起,得到三棱锥. (1)求证:平面平面; (2)若三棱锥的体积为,求的长.
(本小题满分14分)各项均为正数的数列,满足,(). (1)求数列的通项公式; (2)求数列的前项和.
(本小题满分12分)某城市为准备参加“全国文明城市”的评选,举办了“文明社区”评选的活动,在第一轮暗访评分中,评委会对全市50个社区分别从“居民素质”和“社区服务”两项进行评分,每项评分均采用5分制,若设“社区服务”得分为分,“居民素质”得分为分,统计结果如下表: (1)若“居民素质”得分和“社区服务”得分均不低于3分(即且)的社区可以进入第二轮评比,现从50个社区中随机选取一个社区,求这个社区能进入第二轮评比的概率; (2)若在50个社区中随机选取一个社区,这个社区的“居民素质”得1分的概率为,求、的值.
(本小题满分12分)如图,在中,点在边上,,,. (1)求的值; (2)求的长.
已知函数,,且为偶函数.设集合. (Ⅰ)若,记在上的最大值与最小值分别为,求; (Ⅱ)若对任意的实数,总存在,使得对恒成立,试求的最小 值.