在正项等比数列中,, .(1) 求数列的通项公式; (2) 记,求数列的前n项和;(3) 记对于(2)中的,不等式对一切正整数n及任意实数恒成立,求实数m的取值范围.
已知点.(Ⅰ)若,求和的值(Ⅱ)若,其中为坐标原点,求的值.
设是定义在上以2为周期的函数,对,用表示区间.已知当时,函数.(1)求在上的解析式;(2)对自然数,求集合{使方程在上有两个不相等的实根}
设函数的图象关于点对称. (Ⅰ)求; (Ⅱ)求函数的单调增区间; (Ⅲ)求函数在上的最大值和取最大值时的.
已知向量,分别求使下列结论成立的实数的值(Ⅰ);(Ⅱ)
定义:若数列满足,则称数列为“平方递推数列”。已知数列中,,点在函数的图像上,其中为正整数。(1)证明:数列是“平方递推数列”,且数列为等比数列。(2)设(1)中“平方递推数列”的前项之积为,即,求数列的通项及关于的表达式。(3)记,求数列的前项之和,并求使的的最小值。