随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:)获得身高数据的茎叶图如下: (1)根据茎叶图判断哪个班的平均身高较高。(2)计算甲班的样本方差。(3)现从甲乙两班同学中各随机抽取一名身高不低于的同学,求至少有一名身高大于的同学被抽中的概率。
(本小题满分12分).如图,有一块矩形空地ABCD,要在这块空地上开辟一个内接四边形EFGH为绿地,使其四个顶点分别落在矩形的四条边上.已知AB=a(a>2),BC=2,且AE=AH=CF=CG,设AE=x,绿地EFGH面积为y.(1)写出y关于x的函数解析式,并求出它的定义域;(2)当AE为何值时,绿地面积y最大?并求出最大值。
(本小题满分12分).已知为定义在 上的奇函数,当时,函数解析式为. (Ⅰ)求在上的解析式; (Ⅱ)求在上的最值.
(本小题满分12分)求值:(1);(2)设,求的值.
(本小题满分12分)已知集合,集合.(1)若,求和;(2)若,求实数的取值范围.
(本小题满分12分)已知且,. (Ⅰ)求; (Ⅱ)判断函数的奇偶性与单调性; (Ⅲ)对于,当时 , 有,求实数的集合 .