设数列的前项的和,已知.(1)求的值;(2)证明:数列是等差数列,并求出数列的通项公式;(3)证明:对一切正整数,有.
在甲、乙两个盒子中分别装有标号为1,2,3,4的四个球,现从甲、乙两个盒子中各取出1个球,每个小球被取出的可能性相等。(1)求取出的两个球上标号为相邻整数的概率;(2)求取出的两个球上标号之和能被3整除的概率。
如图,已知棱柱的底面是菱形,且面,,,为棱的中点,为线段的中点,(1)求证:面;(2)求证:面
已知函数(1)求函数的最小正周期 (2)求函数的单调递增区间 (3)求函数的最大值,并求出对应的X值的取值集合。
已知点A(1,-1),B(5,1),直线经过点A,且斜率为,(1)求直线的方程。(2)求以B为圆心,并且与直线相切的圆的标准方程。
在等比数列中,,公比,前项和,求首项和项数.