设A、B是函数y= log2x图象上两点, 其横坐标分别为a和a+4, 直线l: x=a+2与函数y= log2x图象交于点C, 与直线AB交于点D.(Ⅰ)求点D的坐标; (Ⅱ)当△ABC的面积大于1时, 求实数a的取值范围.
(本小题共14分) 如图,在四棱柱中,底面是正方形,侧棱与底面垂直,点是正方形对角线的交点,,点,分别在和上,且. (Ⅰ)求证:∥平面; (Ⅱ)若,求的长; (Ⅲ)在(Ⅱ)的条件下,求二面角的余弦值.
(本小题共13分) 某单位在2011新年联欢会上举行一个抽奖活动:甲箱中装有3个红球,2个黑球,乙箱中装有2个红球4个黑球,参加活动者从这两个箱子中分别摸出1个球,如果摸到的都是红球则获奖. (Ⅰ)求每个活动参加者获奖的概率; (Ⅱ)某办公室共有5人,每人抽奖1次,求这5人中至少有3人获奖的概率.
(本小题共13分) 已知函数,且. (Ⅰ)求的值; (Ⅱ)当时,求函数的值域.
(本小题14分)已知数列为等差数列,,,数列的前项和为,且有 (1)求、的通项公式; (2)若,的前项和为,求; (3)试比较与的大小,并说明理由.
.(本小题14分)椭圆的一个顶点为,离心率 (1)求椭圆方程; (2)若直线与椭圆交于不同的两点,且满足,,求直线的方程.