如图,在四棱锥 P - A B C D 中,底面是边长为 2 3 的菱形,且 ∠ B A D = 120 ° ,且 P A ⊥ 平面 A B C D , P A = 2 6 , M , N 分别为 P B , P D 的中点.
(1)证明: M N ∥ 平面 A B C D ; (2) 过点 A 作 A Q ⊥ P C ,垂足为点 Q ,求二面角 A - M N - Q 的平面角的余弦值.
已知向量,函数·,且最小正周期为. (1)求的值; (2)设,求的值.
已知函数. (Ⅰ)当时,讨论函数在[上的单调性; (Ⅱ)如果,是函数的两个零点,为函数的导数,证明:.
已知椭圆的两个焦点和上下两个顶点是一个边长为2且∠F1B1F2为的菱形的四个顶点. (1)求椭圆的方程; (2)过右焦点F2 ,斜率为()的直线与椭圆相交于两点,A为椭圆的右顶点,直线、分别交直线于点、,线段的中点为,记直线的斜率为.求证:为定值.
已知数列前n项和为成等差数列. (I)求数列的通项公式; (II)数列满足,求证:.
如图,四棱柱的底面是平行四边形,且,,,为的中点,平面. (Ⅰ)证明:平面平面; (Ⅱ)若,试求异面直线与所成角的余弦值; (Ⅲ)在(Ⅱ)的条件下,试求二面角的余弦值.