设p:函数y=loga(x+1)(a>0且a≠1)在(0,+∞)上单调递减; q:曲线y=x2+(2a-3)x+1与x轴交于不同的两点.如果p∧q为假,p∨q为真,求实数a的取值范围.
已知函数在其定义域上为奇函数. (1)求的值; (2)若关于的不等式对任意实数恒成立,求实数的取值范围.
已知函数(). (1)若函数有两个零点,求的取值范围; (2)若函数在区间与上各有一个零点,求的取值范围.
已知函数. (Ⅰ)当时,证明:为奇函数; (Ⅱ)若关于的方程有两个不等实数根,求实数的取值范围.
已知是定义在上的奇函数,当时,函数的解析式为. (1)写出在上的解析式; (2)求在上的最大值. (3)对任意的都有成立,求最小的整数M的值.
已知函数(是常数),且,. (1)求的值; (2)当时,判断的单调性并用定义证明; (3)若不等式成立,求实数的取值范围.