已知单调递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.(1)求数列{an}的通项公式;(2)若,Sn=b1+b2+…+bn,求使Sn+n·2n+1>50成立的正整数n的最小值.
定义在上的函数,,当时,,且对任意的,有, (1)求的值; (2)求证:对任意的,恒有; (3)判断的单调性,并证明你的结论。
如图,在三棱锥A-BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=,BD=CD=1,另一个侧面是正三角形 (1)求证:AD^BC (2)求二面角B-AC-D的大小 (3)在直线AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定E的位置;若 不存在,说明理由.
已知函数 (1)讨论函数f (x)的极值情况; (2)设g (x) =" ln(x" + 1),当x1>x2>0时,试比较f (x1 – x2)与g (x1 – x2)及g (x1) –g (x2)三者的大小;并说明理由.
如图所示,在直三棱柱中,,,,,点是棱的中点. (Ⅰ)证明:平面AA1C1C平面; (Ⅱ)求二面角的余弦值.
设,函数 (Ⅰ)若是函数的极值点,求实数的值; (Ⅱ)若函数在上是单调减函数,求实数的取值范围.