提高过江大桥的车辆通行能力可改善整个城市的交通状况。在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数。当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时。研究表明当时,车流速度是车流密度的一次函数。当时,求函数的表达式;当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)可以达到最大?并求出最大值。(精确到1辆/小时)
已知函数f(x)=xm+ax的导函数f′(x)=2x+1,,点An(n, Sn)在函数y="f(x)" (n∈N*)的图像上 , (1)求证:数列为等差数列; (2)设,求数列的前项和
已知抛物线和直线没有公共点(其中、为常数),动点是直线上的任意一点,过点引抛物线的两条切线,切点分别为、,且直线恒过点. (1)求抛物线的方程; (2)已知点为原点,连结交抛物线于、两点, 证明:
已知函数. (1)当且,时,试用含的式子表示,并讨论的单调区间; (2)若有零点,,且对函数定义域内一切满足的实数有. ①求的表达式; ②当时,求函数的图象与函数的图象的交点坐标
如图,是圆的直径,点在圆上,,交于点,平面,,. (1)证明:; (2)求平面与平面所成的锐二面角的余弦值.
已知中,角的对边分别为,且的面积, (1)求的取值范围; (2)求函数的最值