如图,在直四棱柱中,底面为平行四边形,且,,,为的中点.(1) 证明:∥平面;(2)求直线与平面所成角的正弦值.
已知函数 ,设函数 。 (1)求函数 的定义域及值域; (2)判断函数的奇偶性,并说明理由。
已知一次函数满足.(1)求这个函数的解析式;(2)若函数,求函数的零点.
已知集合,集合 (1)当 时,求集合,; (2)若,求实数的取值范围。
已知椭圆G:,过点A(0,5),B(﹣8,﹣3),C、D在该椭圆上,直线CD过原点O,且在线段AB的右下侧.(1)求椭圆G的方程;(2)求四边形ABCD 的面积的最大值.
已知直线与圆C:相交于A,B两点,弦AB中点为M(0,1),(1)求实数的取值范围以及直线的方程;(2)若圆C上存在四个点到直线的距离为,求实数a的取值范围;(3)已知N(0,﹣3),若圆C上存在两个不同的点P,使,求实数的取值范围.