设函数 f x = sin 2 ω x + 2 3 sin ω x cos ω x - cos 2 ω x + λ x ∈ R 的图像关于直线 x = π 对称,其中 ω , λ 为常数,且 ω ∈ 1 2 , 1 .
(1)求函数 f x 的最小正周期; (2)若 y = f x 的图像经过点 π 4 , 0 ,求函数 f x 的值域。
抛物线的焦点坐标是?
设函数,其中向量,,. (1)若,且,求x的值; (2)若函数的图像按向量平移后得到函数的图像,求实数的值。
已知曲线x2+2y2+4x+4y+4=0按向量a=(2,1)平移后得到曲线C. (1)求曲线C的方程; (2)过点D(0,2)的直线与曲线C相交于不同的两点M、N,且M在D、N之间,设,求实数λ的取值范围.
已知点M1(6,2)和M2(1,7),直线y=mx-7与线段M1M2的交点M分有向线段的比为3∶2,求m的值.
已知M 为△ABC的边AB 上一点,且. 求点M 分所成的比.