设函数 f ( x ) = x 2 + sin x 的所有正的极小值点从小到大排成的数列为 { x n } . (Ⅰ)求数列 { x n } 的通项公式. (Ⅱ)设 { x n } 的前 n 项和为 S n ,求 sin S n .
某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:
(Ⅰ)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率; (Ⅱ)若以上述频率作为概率,且各周的销售量相互独立,求 (ⅰ)4周中该种商品至少有一周的销售量为4吨的概率; (ⅱ)该种商品4周的销售量总和至少为15吨的概率.
在 △ A B C 中,内角 A , B , C 对边的边长分别是 a , b , c ,已知 c = 2 , C = π 3 .
(Ⅰ)若 △ A B C 的面积等于 3 ,求 a , b ;
(Ⅱ)若 sin B = 2 sin A ,求 △ A B C 的面积.
青年歌手电视大奖赛共有10名选手参加,并请了12名评委,在计算每位选手的平均分数时,为了避免个别评委所给的极端分数的影响,必须去掉一个最高分和一个最低分后再求平均分数,试设计一个算法,解决该问题,要求画出程序框图(假定分数采用10分制,即每位选手的分数最低为0分,最高为10分).
高一(2)班共有54名同学参加数学竞赛,现已有这54名同学的竞赛分数,请设计一个将竞赛成绩优秀同学的平均分输出的算法(规定90分以上为优秀,画出程序框图,并设计程序).
如图,在边长为4的正方形ABCD的边上有一点P,沿着折线BCDA由点B(起点)向点A(终点)运动.设点P运动的路程为x,△APB的面积为y,求y与x之间的函数关系式.并画出程序框图,写出程序.