青年歌手电视大奖赛共有10名选手参加,并请了12名评委,在计算每位选手的平均分数时,为了避免个别评委所给的极端分数的影响,必须去掉一个最高分和一个最低分后再求平均分数,试设计一个算法,解决该问题,要求画出程序框图(假定分数采用10分制,即每位选手的分数最低为0分,最高为10分).
已知,求(1)(2)
求值
已知圆C的圆心在坐标原点,且过点M(). (1)求圆C的方程; (2)已知点P是圆C上的动点,试求点P到直线的距离的最小值; (3)若直线l与圆C相切,且l与x,y轴的正半轴分别相交于A,B两点,求△ABC的面积最小时直线l的方程.
已知数列{an}中,a1="1" ,a2=3,且点(n,an)满足函数y = kx + b. (1)求k,b的值,并写出数列{an}的通项公式; (2)记,求数列{bn}的前n和Sn.
如图,已知三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,AB=BC,∠ABC=90°,D为AC中点. (1)求证:BD⊥AC1 ; (2)若AB=,AA1=,求AC1与平面ABC所成的角.