如图,P为正方形ABCD的对称中心,A(0,3),B(1,0),直线OP交AB于N,DC于M,点H从原点O出发沿x轴的正半轴方向以1个单位每秒速度运动,同时,点R从O出发沿OM方向以个单位每秒速度运动,运动时间为t.求:(1)C点的坐标为 ;(2)当t为何值时,△ANO与△DMR相似?(3)①求△HCR面积S与t的函数关系式;②并求以A、B、C、R为顶点的四边形是梯形时t的值及S的值.
(8分)在一个不透明的口袋里装有若干个相同的红球, 为了估计袋中红球的数量,某学习小组做了摸球实验, 他们将30个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色, 再把它放回袋中, 不断重复. 下表是几次活动汇总后统计的数据:(1) 请估计:当次数很大时, 摸到白球的频率将会接近 ;假如你去摸一次, 你摸到红球的概率是 ;(精确到0.1).(2) 试估算口袋中红球有多少只?(3)解决了上面的问题后请你从统计与概率方面谈一条启示.
(8分)已知:如图,点C是线段AB的中点,CE=CD,∠ACD=∠BCE,求证:AE=BD.
解方程:
解方程组
(本题12分)如图,直角坐标系中,以点A(1,0)为圆心画圆,点M(4,4)在⊙A上,直线y=-x+b过点M,分别交x轴、y轴于B、C两点.⑴求⊙A的半径和b的值;⑵判断直线BC与⊙A的位置关系,并说明理由;⑶若点P在⊙A上,点Q是y轴上C点下方的一点,当△PQM为等腰直角三角形时,请直接写出满足条件的点Q坐标.