已知椭圆.(Ⅰ)设椭圆的半焦距,且成等差数列,求椭圆的方程;(Ⅱ)设(1)中的椭圆与直线相交于两点,求的取值范围.
已知曲线(为参数)在同一直角坐标系中,将曲线上的点按坐标变换得到曲线,(1)求曲线的普通方程;(2)若点在曲线上,点,当在曲线上运动时,求中点的轨迹方程。
已知抛物线方程为,(1)直线过抛物线的焦点,且垂直于轴,与抛物线交于两点,求的长度。(2)直线过抛物线的焦点,且倾斜角为,直线与抛物线相交于两点,为原点。求△的面积。
已知抛物线C的顶点为坐标原点,焦点为, (1)求抛物线的方程; (2)过点 作直线交抛物线于两点,若直线分别与直线交于两点,求的取值范围.
已知椭圆的离心率为,椭圆C的长轴长为4.(1)求椭圆C的方程;(2)已知直线与椭圆C交于A,B两点,是否存在实数k使得以线段AB 为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由.
如图,在长方体中,,点E在棱上移动.(1)证明:;(2)等于何值时,二面角为.