(本小题满分10分)选修4—4:坐标系与参数方程 已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x轴的正半轴重合.设点O为坐标原点, 直线(参数)与曲线的极坐标方程为(Ⅰ)求直线l与曲线C的普通方程;(Ⅱ)设直线l与曲线C相交于A,B两点,证明:0.
经过抛物线的焦点作一直线,和抛物线相交于,求的长。
抛物线上一点到焦点的距离为,求该点的坐标。
已知抛物线的一个内接三角形的一顶点在原点,三条高线都通过抛物线的焦点,求这个三角形的外接圆的方程。
过点的直线与抛物线交于两点,若线段中点的横坐标为,求。
抛物线顶点在原点,以轴为对称轴,过焦点且垂直于对称轴的弦长为,求抛物线的方程。