有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B 布袋中有三个完全相同的小球,分别标有数字−1,−2和−3.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(2)求点Q落在直线y=-x−1上的概率.
如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是点E,F,连接EF,交AD于点G,求证:AD⊥EF.
如图,在△ABC中,D、E分别是AC和AB上的点,BD与CE相交于点O,给出下列四个条件: ①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC. (1)上述四个条件中,由哪两个条件可以判定AB=AC?(用序号写出所有的情形) (2)选择(1)小题中的一种情形,说明AB=AC.
已知:如图,在△ABC中,AB=AC,点D、E在BC上,且BD=CE.求证: (1)△ABD≌△ACE; (2)∠ADE=∠AED.
在△ABC中,AB=AC,AE是BC边上的高,∠B的平分线与AE相交于点D, 求证:点D在∠ACB的平分线上.
如图,把长方形ABCD的两角折叠,折痕为EF、HG,使HD与BF在同一直线上,已知长方形的两组对边分别平行,试说明两条折痕也相互平行.