耸立在临清市城北大运河东岸的舍利宝塔,是“运河四大名塔”之一(如图 1 ) .数学兴趣小组的小亮同学在塔上观景点 P 处,利用测角仪测得运河两岸上的 A , B 两点的俯角分别为 17 . 9 ° , 22 ° ,并测得塔底点 C 到点 B 的距离为142米 ( A 、 B 、 C 在同一直线上,如图 2 ) ,求运河两岸上的 A 、 B 两点的距离(精确到1米).
(参考数据: sin 22 ° ≈ 0 . 37 , cos 22 ° ≈ 0 . 93 , tan 22 ° ≈ 0 . 40 , sin 17 . 9 ° ≈ 0 . 31 , cos 17 . 9 ° ≈ 0 . 95 , tan 17 . 9 ° ≈ 0 . 32 )
如图,点B、C、D都在⊙O上,过C点作CA∥BD交OD的延长线于点A,连接BC,∠B=∠A=30°,BD=. (1)求证:AC是⊙O的切线; (2)求由线段AC、AD与弧CD所围成的阴影部分的面积.(结果保留π)
解方程:.
如图,在平面直角坐标系中,点A,B的坐标分别是(-3,0),(0,6),动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动。以CP,CO为邻边构造□PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为秒. (1)当点C运动到线段OB的中点时,求的值及点E的坐标; (2)当点C在线段OB上时,求证:四边形ADEC为平行四边形; (3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M,N分别在第一、四象限,在运动过程中,设□PCOD的面积为S. ①当点M,N中,有一点落在四边形ADEC的边上时,求出所有满足条件的的值; ②若点M,N中恰好只有一个点落在四边形ADEC内部(不包括边界)时,直接写出S的取值范围.
八(1)班五位同学参加学校举办的数学竞赛,试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分。赛后A,B, C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表:
(1)根据以上信息,求A,B,C,D四位同学成绩的平均分; (2)最后获知:A,B,C,D,E五位同学成绩分别是95分,81分,64分,83分,58分. ①求E同学的答对题数和答错题数; ②经计算,A,B,C,D四位同学实际成绩平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况.请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可).
勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感。他惊喜地发现:当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明.下面是小聪利用图1证明勾股定理的过程: 将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:. 证明:连结DB,过点D作BC边上的高DF, 则DF=EC=, ∵, 又∵, ∴, ∴ 请参照上述证法,利用图2完成下面的证明: 将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°. 求证:. 证明:连结, ∵, 又∵, ∴. ∴.