如图, ⊙ O 是 ΔABC 的外接圆, O 点在 BC 边上, ∠ BAC 的平分线交 ⊙ O 于点 D ,连接 BD 、 CD ,过点 D 作 BC 的平行线,与 AB 的延长线相交于点 P .
(1)求证: PD 是 ⊙ O 的切线;
(2)求证: ΔPBD ∽ ΔDCA ;
(3)当 AB = 6 , AC = 8 时,求线段 PB 的长.
计算:(1)32﹣|﹣2|﹣(π﹣3)0+;(2)(1+)÷.
已知二次函数y=﹣x2+bx+c的对称轴为x=2,且经过原点,直线AC解析式为y=kx+4,(1)求二次函数解析式;(2)若=,求k;(3)若以BC为直径的圆经过原点,求k.
△ABC为等边三角形,边长为a,DF⊥AB,EF⊥AC,(1)求证:△BDF∽△CEF;(2)若a=4,设BF=m,四边形ADFE面积为S,求出S与m之间的函数关系,并探究当m为何值时S取最大值;(3)已知A、D、F、E四点共圆,已知tan∠EDF=,求此圆直径.
已知两直线L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,则有k1•k2=﹣1.(1)应用:已知y=2x+1与y=kx﹣1垂直,求k;(2)直线经过A(2,3),且与y=x+3垂直,求解析式.
从全校1200名学生中随机选取一部分学生进行调查,调查情况:
(1)参加调查的学生有 人;(2)请将条形统计图补全;(3)请估计全校上网不超过7小时的学生人数.