已知圆,直线过定点.(1)求圆心的坐标和圆的半径;(2)若与圆C相切,求的方程;(3)若与圆C相交于P,Q两点,求三角形面积的最大值,并求此时的直线方程.
(本小题满分12分)设:;:.若是的必要而不充分条件,求实数的取值范围.
(本小题满分12分)函数部分图象如图所示.(Ⅰ)求的最小正周期及解析式;(Ⅱ)设,求函数在区间上的最大值和最小值.
对于函数,若时,恒有成立,则称函数是上 的“函数”.(Ⅰ)当函数是定义域上的“函数”时,求实数的取值范围;(Ⅱ)若函数为上的“函数”.(ⅰ)试比较与的大小(其中);(ⅱ)求证:对于任意大于的实数,,,,均有.
已知动点到点的距离等于点到直线的距离,点的轨迹为.(Ⅰ)求轨迹的方程;(Ⅱ)设为直线上的点,过点作曲线的两条切线,,(ⅰ)当点时,求直线的方程;(ⅱ)当点在直线上移动时,求的最小值.
如图,在四棱锥中,底面是矩形,平面,,,点是的中点,点是边上的任意一点.(Ⅰ)当点为边的中点时,判断与平面的位置关系,并加以证明;(Ⅱ)证明:无论点在边的何处,都有;(Ⅲ)求三棱锥的体积.