已知圆,直线过定点.(1)求圆心的坐标和圆的半径;(2)若与圆C相切,求的方程;(3)若与圆C相交于P,Q两点,求三角形面积的最大值,并求此时的直线方程.
(1)求数列的通项公式 (2)求数列的前n项和
已知a=,c=2,B=150°,求边b的长及
设函数是定义在上的减函数,并且满足,, (1)求,,的值, (2)如果,求x的取值范围。
(满分12分) 某商店按每件80元的价格,购进商品1000件(卖不出去的商品将成为废品);市场调研推知:当每件售价为100元时,恰好全部售完;当售价每提高1元时,销售量就减少5件;为获得最大利润,商店决定提高售价元,获得总利润元. (1)请将表示为的函数; (2)当售价为多少时,总利润取最大值,并求出此时的利润.
函数是R上的偶函数,且当时,函数的解析式为 (1)求的值; (2)用定义证明在上是减函数; (3)求当时,函数的解析式;