某校为了深化课堂教学改革,现要配备一批A、B两种型号的小白板,经与销售商洽谈,搭成协议,购买一块A型比一块B型贵20元,且购5块A型和4块B型共需820元。(1)求购买一块A型、B型各需多少元?(2)根据该校实际情况,需购A、B两种型号共60块,要求总价不超5300元,且A型数量多于总数的,请通过计算,求出该校有几种购买方案?(3)在(2)的条件下,学校为了节约开支,至少需花多少钱采购?
点D是⊙O的直径CA延长线上一点,点B在⊙O上,∠DBA=∠C.请判断BD所在的直线与⊙O的位置关系,并说明理由;若AD=AO=1,求图中阴影部分的面积(结果保留根号).
多年来,许多船只、飞机都在大西洋的一个区域内神秘失踪,这个区域被称为百慕大三角.根据图中标出的百慕大三角的位置及相关数据计算:∠BAC的度数;百慕大三角的面积.(参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)
已知二次函数(m为常数).求证:不论m为何值,该二次函数图象的顶点P都在函数的图象上;若顶点P的横、纵坐标相等,求P点坐标
有3张背面相同的卡片,正面分别写着数字“1”、“2”、“3”.将卡片洗匀后背面朝上放在桌面上.若小明从中任意抽取一张,则抽到奇数的概率是 ;若小明从中任意抽取一张后,小亮再从剩余的两张卡片中抽取一张,规定:抽到的两张卡片上的数字之和为奇数,则小明胜,否则小亮胜.你认为这个游戏公平吗?请用 画树状图或列表的方法说明你的理由.
已知正比例函数 (k≠0)和反比例函数的图象都经过点(-2,1).求这两个函数的表达式; 试说明当x为何值时,