已知数列是等差数列,是等比数列,且,,.(Ⅰ)求数列和的通项公式(Ⅱ)数列满足,求数列的前项和.
在 △ABC 中,角 A,B,C 所对的边分别为 a,b,c ,且满足 csinA=acosC . (1)求角 C 的大小; (2)求 3 sinA-cos(B+ π 4 ) 的最大值,并求取得最大值时角 A,B 的大小.
已知函数(a是常数,a∈R) (1)当a=1时求不等式的解集. (2)如果函数恰有两个不同的零点,求a的取值范围.
已知曲线(为参数),曲线,将的横坐标伸长为原来的2倍,纵坐标缩短为原来的得到曲线. (1)求曲线的普通方程,曲线的直角坐标方程; (2)若点P为曲线上的任意一点,Q为曲线上的任意一点,求线段的最小值,并求此时的P的坐标.
如图,在中,是的∠A的平分线,圆经过点与切于点,与相交于,连结,. (1)求证:;(2)求证:.
设椭圆C1:=1(a>b>0)的左、右焦点分别为为,恰是抛物线C2:的焦点,点M为C1与C2在第一象限的交点,且|MF2|=. (1)求C1的方程; (2)平面上的点N满足,直线l∥MN,且与C1交于A,B两点,若,求直线l的方程.