小强和爸爸上山游玩,两人距地面的高度y(米)与小强登山时间x之间的函数图象分别如图中折线OAC和线段DE所示,根据函数图象进行以下探究:信息读取:(1)爸爸登山的速度是每分钟 米;(2)请解释图中点B的实际意义;图象理解:(3)求线段DE所表示的y与x之间的函数关系式,并写出自变量x的取值范围;(4)计算并填空:m= ;问题解决:(5)若小强提速后,他登山的速度是爸爸速度的3倍,问小强登山多长时间时开始提速?此时小强距地面的高度是多少米?
如图,直线,平分,,求的度数.
如图,在平面直角坐标系中,抛物线与轴交于、两点(点在点的左侧),与轴交于点,对称轴与轴交于点,点在抛物线上.
(1)求直线的解析式;
(2)点为直线下方抛物线上的一点,连接,.当的面积最大时,连接,,点是线段的中点,点是上的一点,点是上的一点,求的最小值;
(3)点是线段的中点,将抛物线沿轴正方向平移得到新抛物线,经过点,的顶点为点.在新抛物线的对称轴上,是否存在点,使得为等腰三角形?若存在,直接写出点的坐标;若不存在,请说明理由.
对任意一个三位数,如果满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为.例如,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为,,所以.
(1)计算:,;
(2)若,都是“相异数”,其中,,,,都是正整数),规定:,当时,求的最大值.
如图,中,,,点是上一点,连接.
(1)如图1,若,,求的长;
(2)如图2,点是线段延长线上一点,过点作于点,连接、,当时,求证:.
某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.
(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?
(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元千克,今年樱桃的市场销售量比去年减少了,销售均价与去年相同;该果农去年枇杷的市场销售量为200千克,销售均价为20元千克,今年枇杷的市场销售量比去年增加了,但销售均价比去年减少了,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求的值.