已知:如图,在梯形ABCD中,AD // BC,AB⊥BC,点M在边BC上,且∠MDB =∠ADB,. (1)求证:BM=CM; (2)作BE⊥DM,垂足为点E,并交CD于点F. 求证:.
某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,日销售量 y ( kg ) 与时间第 t 天之间的函数关系式为 y = 2 t + 100 ( 1 ⩽ t ⩽ 80 , t 为整数),销售单价 p (元 / kg ) 与时间第 t 天之间满足一次函数关系如下表:
时间第 t 天
1
2
3
…
80
销售单价 p / (元 / kg )
49.5
49
48.5
10
(1)直接写出销售单价 p (元 / kg ) 与时间第 t 天之间的函数关系式.
(2)在整个销售旺季的80天里,哪一天的日销售利润最大?最大利润是多少?
如图,在平行四边形 ABCD 中, AE ⊥ BC ,垂足为点 E ,以 AE 为直径的 ⊙ O 与边 CD 相切于点 F ,连接 BF 交 ⊙ O 于点 G ,连接 EG .
(1)求证: CD = AD + CE .
(2)若 AD = 4 CE ,求 tan ∠ EGF 的值.
如图, A , B 两市相距 150 km ,国家级风景区中心 C 位于 A 市北偏东 60 ° 方向上,位于 B 市北偏西 45 ° 方向上.已知风景区是以点 C 为圆心、 50 km 为半径的圆形区域.为了促进旅游经济发展,有关部门计划修建连接 A , B 两市的高速公路,高速公路 AB 是否穿过风景区?通过计算加以说明.(参考数据: 3 ≈ 1 . 73 )
为了了解本校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,课题小组随机选取该校部分学生进行了问卷调查(问卷调查表如图1所示),并根据调查结果绘制了图2、图3两幅统计图(均不完整),请根据统计图解答下列问题.
(1)本次接受问卷调查的学生有 名.
(2)补全条形统计图.
(3)扇形统计图中 B 类节目对应扇形的圆心角的度数为 .
(4)该校共有2000名学生,根据调查结果估计该校最喜爱新闻节目的学生人数.
一个不透明的口袋中有4个大小、质地完全相同的乒乓球,球面上分别标有数 − 1 ,2, − 3 ,4.
(1)摇匀后任意摸出1个球,则摸出的乒乓球球面上的数是负数的概率为 .
(2)摇匀后先从中任意摸出1个球(不放回),再从余下的3个球中任意摸出1个球,用列表或画树状图的方法求两次摸出的乒乓球球面上的数之和是正数的概率.