如图,在平面直角坐标系中,以轴为始边,两个锐角,的终边分别与单位圆相交于A,B 两点.(Ⅰ)若,,求的值;(Ⅱ)若角的终边与单位圆交于点,设角的正弦线分别为,试问:以作为三边的长能否构成一个三角形?若能,请加以证明;若不能,请说明理由.
(理)已知动点分别在轴、轴上,且满足,点在线段上,且 (是不为零的常数)。设点的轨迹为曲线。 (1)求点的轨迹方程; (2)若,点是上关于原点对称的两个动点(不在坐标轴上),点, (3)求的面积的最大值。
某汽车销售公司为促销采取了较灵活的付款方式,对购买10万元一辆的轿车在一年 内将款全部付清的前提下,可以选择以下两种分期付款方案购车: 方案1:分3次付清,购买后4个月第一次付款,再过4个月第二次付款,再过4个月第三次付款. 方案2:分12次付清,购买后1个月第一次付款,再过1个月第二次付款,……购买后12个月第十二次付款.现规定分期付款中,每期付款额相同,月利率为0.8%,每月利息按复利计息,试比较以上两种方案的哪一种方案付款总数较少?(参考数据:1.0083=1.024,1.0084=1.033,1.00811=1.092,1.00812=1.1)
如图,已知四棱锥P—ABCD,底面ABCD为菱形,PA平面ABCD,ABC=60O,E,F分别是BC,PC 的中点。H为PD上的动点,EH与平面PAD所成最大角的正切值为。 (1)证明:AEPD; (2)求异面直线PB与AC所成的角的余弦值; (3)若AB=2,求三棱锥P—AEF的体积。
质点A位于数轴x=0处,质点B位于x=2处.这两个质点每隔1秒钟都向左或向右平移一个单位,设向左移动的概率为,向右移动的概率为.(I)求3秒后,质点A在点x=1处的概率; (II)求2秒后,质点A、B同时在x=2处的概率.
已知函数y=sinωx•cosωx(ω>0) (ω>0)的周期为 , (I) 求ω 的值; (II) 当0≤x≤时,求函数的最大值和最小值及相应的x的值.