如图,在平面直角坐标系中,以轴为始边,两个锐角,的终边分别与单位圆相交于A,B 两点.(Ⅰ)若,,求的值;(Ⅱ)若角的终边与单位圆交于点,设角的正弦线分别为,试问:以作为三边的长能否构成一个三角形?若能,请加以证明;若不能,请说明理由.
(本小题满分12分)如图,在四棱柱ABCD-A1B1C1D1中,侧面ADD1A1⊥底面ABCD,D1A=DD1=,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2.(1)求证:A1O∥平面AB1C;(2)求二面角B1-AC-B的余弦值.
(本小题满分12分)已知,,满足=0(1)将y表示为x的函数f(x),并求f(x)的最小正周期;(2)已知a,b,c分别为△ABC的三个内角A,B,C对应的边长,若f(x)≤f()对所有x∈R恒成立,且a=2,求b+c的取值范围.
(本小题满分10分)选修4-5:不等式选讲:已知函数.(Ⅰ)求不等式的解集;(Ⅱ)若关于的不等式恒成立,求实数的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程:以直角坐标系的原点为极点,轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线的参数方程为 (为参数,),曲线的极坐标方程为.(Ⅰ)求曲线的直角坐标方程;(Ⅱ)设直线与曲线相交于、两点,当变化时,求的最小值.
(本小题满分10分)选修4-1:几何证明选讲:如图所示,已知与⊙相切,为切点,过点的割线交圆于两点,弦,相交于点,为上一点,且.(Ⅰ)求证:;(Ⅱ)若,求的长.