某连锁分店销售某种商品,每件商品的成本为4元,并且每件商品需向总店交元(1≤a≤3)的管理费,预计当每件商品的售价为元(8≤x≤9)时,一年的销售量为(10-x)2万件.(1)求该连锁分店一年的利润L(万元)与每件商品的售价x的函数关系式L(x);(2)当每件商品的售价为多少元时,该连锁分店一年的利润L最大,并求出L的最大值M(a).
如图,几何体中,四边形为菱形,,,面∥面,、、都垂直于面,且,为的中点,为的中点. (1)求证:为等腰直角三角形; (2)求二面角的余弦值.
已知函数,若存在,使,则称是函数的一个不动点.设二次函数. (1)对任意实数,函数恒有两个相异的不动点,求的取值范围; (2)在(1)的条件下,若的图象上两点的横坐标是的不动点,且两点关于直线对称,求的最小值.
已知向量,,且与满足,其中实数. (1)试用表示; (2)求的最小值,并求此时与的夹角的值.
已知函数,. (1)求的值; (2)若,,求.
已知直线被两直线和截得线段的中点为,求直线的方程.