解不等式组并把解集在数轴上表示出来.
先化简,再求值: ( 1 + 1 x + 1 ) ÷ x 2 - 4 2 x + 2 ,其中 x = 1 .
已知抛物线 y = a x 2 + bx - 5 与 x 轴交于点 A ( - 1 , 0 ) 和 B ( - 5 , 0 ) ,与 y 轴交于点 C ,顶点为 P ,点 N 在抛物线对称轴上且位于 x 轴下方,连 AN 交抛物线于 M ,连 AC 、 CM .
(1)求抛物线的解析式;
(2)如图1,当 tan ∠ ACM = 2 时,求 M 点的横坐标;
(3)如图2,过点 P 作 x 轴的平行线 l ,过 M 作 MD ⊥ l 于 D ,若 MD = 3 MN ,求 N 点的坐标.
已知等边三角形 ABC ,过 A 点作 AC 的垂线 l ,点 P 为 l 上一动点(不与点 A 重合),连接 CP ,把线段 CP 绕点 C 逆时针方向旋转 60 ° 得到 CQ ,连 QB .
(1)如图1,直接写出线段 AP 与 BQ 的数量关系;
(2)如图2,当点 P 、 B 在 AC 同侧且 AP = AC 时,求证:直线 PB 垂直平分线段 CQ ;
(3)如图3,若等边三角形 ABC 的边长为4,点 P 、 B 分别位于直线 AC 异侧,且 ΔAPQ 的面积等于 3 4 ,求线段 AP 的长度.
某商贸公司购进某种商品的成本为20元 / kg ,经过市场调研发现,这种商品在未来40天的销售单价 y (元 / kg ) 与时间 x (天 ) 之间的函数关系式为: y = 0 . 25 x + 30 1 ⩽ x ⩽ 20 且 x 为整数 35 ( 20 < x ⩽ 40 且 x 为整数 ) ,且日销量 m ( kg ) 与时间 x (天 ) 之间的变化规律符合一次函数关系,如下表:
时间 x (天 )
1
3
6
10
…
日销量 m ( kg )
142
138
132
124
(1)填空: m 与 x 的函数关系为 ;
(2)哪一天的销售利润最大?最大日销售利润是多少?
(3)在实际销售的前20天中,公司决定每销售 1 kg 商品就捐赠 n 元利润 ( n < 4 ) 给当地福利院,后发现:在前20天中,每天扣除捐赠后的日销售利润随时间 x 的增大而增大,求 n 的取值范围.
如图,已知 AB 是 ⊙ O 的直径, C 为 ⊙ O 上一点, ∠ OCB 的角平分线交 ⊙ O 于点 D , F 在直线 AB 上,且 DF ⊥ BC ,垂足为 E ,连接 AD 、 BD .
(1)求证: DF 是 ⊙ O 的切线;
(2)若 tan ∠ A = 1 2 , ⊙ O 的半径为3,求 EF 的长.