如图,①因为∠1=∠2,所以 ,理由是 ;②因为∠BAD+∠ADC=1800,所以 ,理由是 ;③因为∠3=∠ABC,所以 ,理由是 .
⊙ O D E / / B C 如图,在 △ A B C 中, ∠ A = 90 ° , ∠ B = 60 ° , A B = 3 ,点 D 从点 A 以每秒1个单位长度的速度向点 B 运动(点 D 不与 B 重合),过点 D 作DE∥BC交 A C 于点 E .以 D E 为直径作⊙O,并在 ⊙ O 内作内接矩形 A D F E ,设点 D 的运动时间为 t 秒. (1)用含 t 的代数式表示 △ D E F 的面积 S ; (2)当 t 为何值时, ⊙ O 与直线 B C 相切?
如图,△ABC的边BC在直线上,AC⊥BC,且AC=BC,△DEF的边FE也在直线上,边DF与边AC重合,且DF=EF.(1)在图(1)中,请你通过观察、思考,猜想并写出AB与AE所满足的数量关系和位置关系;(不要求证明)(2)将△DEF沿直线向左平移到图(2)的位置时,DE交AC于点G,连结AE,BG.猜想△BCG与△ACE能否通过旋转重合?请证明你的猜想.
在△ABC和△DEF中,∠C=∠F=90°.有如下五张背面完全相同的纸牌①、②、③、④、⑤,其正面分别写有五个不同的等式,小民将这五张纸牌背面朝上洗匀后先随机摸出一张(不放回),再随机摸出一张.请结合以上条件,解答下列问题.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用①、②、③、④、⑤表示);(2)用两次摸牌的结果和∠C=∠F=90°作为条件,求能满足△ABC和△DEF全等的概率.
给出下列命题:命题1:直线与双曲线有一个交点是(1,1);命题2:直线与双曲线有一个交点是(,4);命题3:直线与双曲线有一个交点是(,9);命题4:直线与双曲线有一个交点是(,16);……………………………………………………(1)请你阅读、观察上面命题,猜想出命题(为正整数);(2)请验证你猜想的命题是真命题.
我市某建筑工地,欲拆除该工地的一危房AB(如图),准备对该危房实施定向爆破.已知距危房AB水平距离60米(BD=60米)处有一居民住宅楼,该居民住宅楼CD高15米,在该该住宅楼顶C处测得此危房屋顶A的仰角为30°,请你通过计算说明在实施定向爆破危房AB时,该居民住宅楼有无危险?(在地面上以点B为圆心,以AB长为半径的圆形区域为危险区域,参考数据:,)