如图,已知直线与抛物线相切于点,且与轴交于点,为坐标原点,定点的坐标为. (1)若动点满足,求点的轨迹;(2)若过点的直线(斜率不等于零)与(1)中的轨迹交于不同的两点(在之间),试求△OBE与△OBF面积之比的取值范围.
(本小题满分12分)已知圆与圆(其中) 相外切,且直线与圆相切,求的值.
(本小题满分12分)已知圆C:,直线L: (1) 证明:无论取什么实数,L与圆恒交于两点;(2) 求直线被圆C截得的弦长最小时直线L的斜截式方程.
(本小题满分12分)如图,在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点.(1)求证:EF ∥平面CB1D1;(2)求证:平面CAA1C1⊥平面CB1D1.
(本小题满分12分)如图,垂直于⊙所在的平面,是⊙的直径,是⊙上一点,过点 作,垂足为. 求证:平面
(本小题满分10分)过点的直线与轴的正半轴、轴的正半轴分别交于点、,为坐标原点,的面积等于6,求直线的方程.