设函数(,b∈Z),曲线在点(2,)处的切线方程为=3.(1)求的解析式;(2)证明:曲线=上任一点的切线与直线和直线所围三角形的面积为定值,并求出此定值.
盒中装有个零件,其中个是使用过的,另外个未经使用. (Ⅰ)从盒中每次随机抽取个零件,每次观察后都将零件放回盒中,求次抽取中恰有次 抽到使用过的零件的概率; (Ⅱ)从盒中随机抽取个零件,使用后放回盒中,记此时盒中使用过的零件个数为,求的分布列和数学期望.
已知函数,. (Ⅰ)求方程=0的根; (Ⅱ)求的最大值和最小值.
已知函数. (Ⅰ)求函数的单调区间; (Ⅱ)若函数的图像在点处的切线的斜率为,问: 在什么范围取值时,对于任意的,函数在区间上总存在极值? (Ⅲ)当时,设函数,若在区间上至少存在一个,使得成立,试求实数的取值范围.
已知点分别为椭圆的左、右焦点,点为椭圆上任意一点,到焦点的距离的最大值为,且的最大面积为. (I)求椭圆的方程。 (II)点的坐标为,过点且斜率为的直线与椭圆相交于两点。对于任意的是否为定值?若是求出这个定值;若不是说明理由。
已知数列(常数p>0),对任意的正整数n,并有 (I)试判断数列是否是等差数列,若是,求其通项公式,若不是,说明理由; (II)令的前n项和,求证: