已知函数的导函数是,在处取得极值,且,(Ⅰ)求的极大值和极小值;(Ⅱ)记在闭区间上的最大值为,若对任意的总有成立,求的取值范围;(Ⅲ)设是曲线上的任意一点.当时,求直线OM斜率的最小值,据此判断与的大小关系,并说明理由.
(本小题满分12分)从一批苹果中随机抽取100个作为样本,其重量(单位:克)的频数分布表如下:
(1)在频率分布直方图中,求分组重量在对应小矩形的高;(2)利用频率估计这批苹果重量的平均数.(3)用分层抽样的方法从重量在和的苹果中抽取5个,从这5个苹果任取2个,求重量在这两个组中各有1个的概率.
(本小题满分12分)在平面直角坐标系中,已知圆:和点,过点的直线交圆于两点(1)若,求直线的方程;(2)设弦的中点为,求点的轨迹方程
(本小题满分10分)等差数列中,为其前项和,已知.(1)求数列的通项公式;(2)设,求数列的前项和的表达式
已知抛物线顶点为O(0,0),焦点为F(1,0),A为C上异于顶点的任意一点,过点A的直线交C 于另一点B,交x轴的正半轴于点D,且有,延长AF交曲线C于点E.过点E作直线平行于, 设与此抛物线准线交于点.(Ⅰ)求抛物线的的方程;(Ⅱ)设点的纵坐标分别为、、,求的值;(Ⅲ)求面积的最小值.
已知椭圆:的左、右焦点分别是、,是椭圆外的动点,满足点P是线段与该椭圆的交点,点在线段上,并且满足(Ⅰ)求点的轨迹的方程;(Ⅱ)过原点的直线与曲线分别交于点(不重合),设,的面积分别为,,求的取值范围.