已知函数 f ( x ) = A sin ( π 3 x + φ ) , x ∈ R , A > 0 , 0 < φ < π 2 . y = f ( x ) 的部分图像,如图所示, P , Q 分别为该图像的最高点和最低点,点 P 的坐标为 ( 1 , A ) . (Ⅰ)求 f ( x ) 的最小正周期及 φ 的值;
(Ⅱ)若点 R 的坐标为 ( 1 , 0 ) , ∠ P R Q = 2 π 3 , 求 A 的值 .
设函数 ,.;(2)如果存在,使得,求满足上述条件的最大整数;(3)求证:对任意的,都有成立.
已知函数,常数(1)讨论函数的奇偶性,并说明理由;(2)若函数在上为增函数,求的取值范围.
数列满足,其中,求值,猜想,并用数学归纳法加以证明。
已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,底面ABCD,且PA=AD=DC=AB=1,M是PB的中点。(1)求直线AC与PB所成角的余弦值;(2)求面AMC与面PMC所成锐二面角的大小的余弦值。
(本小题15分)在坐标平面内有一点列,其中,,并且线段所在直线的斜率为.(1)求(2)求出数列的通项公式 (3)设数列的前项和为,求.