设函数对任意实数x 、y都有,(1)求的值;(2)若,求、、的值;(3)在(2)的条件下,猜想的表达式,并用数学归纳法加以证明。
在直角坐标系中,直线的参数方程为(t为参数).在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程为 (1)求直线及圆的直角坐标方程; (2)设圆与直线交于点.若点的坐标为(3,),求.
如图,AB是的一条切线,切点为B,直线ADE,CFD,CGE都是的割线,已知AC=AB. (1)求证:FG//AC; (2)若CG=1,CD=4,求的值.
已知函数. (1)当时,求函数的极值; (2)设定义在D上的函数在点处的切线方程为.当时,若在D内恒成立,则称P为函数的“转点”.当时,试问函数是否存在“转点”?若存在,求出“转点”的横坐标;若不存在,请说明理由.
已知两点及,点在以、为焦点的椭圆上,且、、构成等差数列. (1)求椭圆的方程; (2)如图,动直线与椭圆有且仅有一个公共点,点是直线上的两点,且,.求四边形面积的最大值.
如图,在四边形中,,,点为线段上的一点.现将沿线段翻折到(点与点重合),使得平面平面,连接,. (1)证明:平面; (2)若,且点为线段的中点,求二面角的大小.