在 △ A B C 中, a = 3 , b = 2 , 1 + 2 cos B + C = 0 ,求:
(1)角A的大小;
(2)边 B C 上的高.
已知a,b为常数,a¹0,函数. (1)若a=2,b=1,求在(0,+∞)内的极值; (2)①若a>0,b>0,求证:在区间[1,2]上是增函数; ②若,,且在区间[1,2]上是增函数,求由所有点形成的平面区域的面积.
设数列{an}满足an+1=2an+n2-4n+1.(1)若a1=3,求证:存在(a,b,c为常数),使数列{an+f(n)}是等比数列,并求出数列{an}的通项公式;(2)若an是一个等差数列{bn}的前n项和,求首项a1的值与数列{bn}的通项公式.
如图,已知椭圆的右顶点为A(2,0),点P(2e,)在椭圆上(e为椭圆的离心率).(1)求椭圆的方程;(2)若点B,C(C在第一象限)都在椭圆上,满足,且,求实数λ的值.
甲、乙两地相距1000,货车从甲地匀速行驶到乙地,速度不得超过80,已知货车每小时的运输成本(单位:元)由可变成本和固定成本组成,可变成本是速度平方的倍,固定成本为a元.(1)将全程运输成本y(元)表示为速度v()的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,货车应以多大的速度行驶?
如图,在四棱锥P-ABCD中,四边形ABCD是矩形,平面PCD⊥平面ABCD,M为PC中点.求证:(1)PA∥平面MDB;(2)PD⊥BC.