设函数 f ( x ) 定义在 0 , + ∞ 上, f ( 1 ) = 0 ,导函数 f ` ( x ) = 1 x , g ( x ) = f ( x ) + f ` ( x ) .
(Ⅰ)求 g ( x ) 的单调区间和最小值;
(Ⅱ)讨论 g ( x ) 与 g ( 1 x ) 的大小关系;
(Ⅲ)是否存在 x 0 > 0 ,使得 g ( x ) - g ( x 0 ) < 1 x 对任意 x > 0 成立?若存在,求出 x 0 的取值范围;若不存在请说明理由。
(本小题12分)一座抛物线形的拱桥的跨度为米,拱顶离水平面米,水面上有一竹排上放有宽10米、高6米的木箱,问其能否安全通过拱桥?
(本小题12分)在对人们休闲的一次调查中,共调查了124人,其中女性70人 男性54人.女性中有43人主要的休闲方式是看电视,另外27人的休闲方式是运动;男性 中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动. (1) 根据以上数据建立一个2×2的列联表; (2)检验性别是否与休闲方式有关,可靠性有多大? 参考临界值如下
(本小题12分)已知函数 (1)求这个函数的导数; (2)求这个函数的图像在点处的切线方程。
(本小题满分14分) 用总长14.8m的钢条做一个长方体容器的框架,如果所做容器的底面的一边长比另一边长多0.5m,那么高是多少时容器的容积最大?并求出它的最大容积.
(本小题满分12分) 袋中有4个黑球、3个白球、2个红球,从中任取2个球,每取到一个黑球记0分,每取到一个白球记1分,每取到一个红球记2分,用X表示得分数. (1)求X的概率分布列; (2)求X的数学期望EX.