已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内共生产该品牌服装x千件并全部销售完,每千件的销售收入为万元,且.(1)写出年利润W(万元)关于年产量x(千件)的函数解析式;(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得利润最大?(注:年利润=年销售收入﹣年总成本)
已知两点,直线AM、BM相交于点M,且这两条直线的斜率之积为. (Ⅰ)求点M的轨迹方程; (Ⅱ)记点M的轨迹为曲线C,曲线C上在第一象限的点P的横坐标为1,直线PE、PF与圆()相切于点E、F,又PE、PF与曲线C的另一交点分别为Q、R. 求△OQR的面积的最大值(其中点O为坐标原点).
已知函数,. (Ⅰ)若与在处相切,试求的表达式; (Ⅱ)若在上是减函数,求实数的取值范围; (Ⅲ)证明不等式: .
四棱锥,底面为平行四边形,侧面底面.已知,,,为线段的中点. (Ⅰ)求证:平面; (Ⅱ)证明:.
某学校的三个学生社团的人数分布如下表(每名学生只能参加一个社团):
学校要对这三个社团的活动效果进行抽样调查,按分层抽样的方法从三个社团成员中抽取18人,结果拳击社被抽出了6人. (Ⅰ)求拳击社女生有多少人; (Ⅱ)从围棋社指定的3名男生和2名女生中随机选出2人参加围棋比赛,求这两名同学是一名男生和一名女生的概率.
已知函数,记函数的最小正周期为,向量,(),且. (Ⅰ)求在区间上的最值; (Ⅱ)求的值.