在中,角、、的对边分别为,且满足,、求角的大小;、若求的面积。
已知函数,设,. (1)猜测并直接写出的表达式;此时若设,且关于的函数在区间上的最小值为,则求的值;(2)设数列为等比数列,数列满足,,若 ,,其中,则①当时,求;②设为数列的前项和,若对于任意的正整数,都有,求实数的取值范围.
已知圆C方程:(x-1)2 + y 2=9,垂直于x轴的直线L与圆C相切于N点(N在圆心C的右侧),平面上有一动点P,若PQ⊥L,垂足为Q,且;(1)求点P的轨迹方程; (2)已知D为点P的轨迹曲线上第一象限弧上一点,O为原点,A、B分别为点P的轨迹曲线与轴的正半轴的交点,求四边形OADB的最大面积及D点坐标.
已知函数.(1)若曲线经过点,曲线在点处的切线与直线平行,求的值;(2)在(1)的条件下,试求函数(为实常数,)的极大值与极小值之差;
在边长为的正方形ABCD中,E、F分别为BC、CD的中点,M、N分别为AB、CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合,构成一个三棱锥.(1)判别MN与平面AEF的位置关系,并给出证明;(2)证明AB⊥平面BEF;(3)求多面体E-AFNM的体积.
某学校900名学生在一次百米测试中,成绩全部介于秒与秒之间,抽取其中50个样本,将测试结果按如下方式分成五组:第一组,第二组,…,第五组,下图是按上述分组方法得到的频率分布直方图.(1)若成绩小于14秒认为优秀,求该样本在这次百米测试中成绩优秀的人数;(2)请估计本年级900名学生中,成绩属于第三组的人数;(3)若样本第一组中只有一个女生,其他都是男生,第五组则只有一个男生,其他都是女生,现从第一、五组中各抽一个同学组成一个新的组,求这个新组恰好由一个男生和一个女生构成的概率.