已知函数=.(Ⅰ)当时,求不等式 ≥3的解集;(Ⅱ) 若≤的解集包含,求的取值范围.
在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1=2,侧棱AA1⊥面ABC,D、E分别是棱A1B1、AA1的中点,点F在棱AB上,且(I)求证:EF∥平面BDC1;(II)求二面角E-BC1-D的余弦值
已知函数,(I)若,求函数的最大值和最小值,并写出相应的x的值;(II)设的内角、、的对边分别为、、,满足,且,求、的值
已知:等差数列{an}中,a3+a4=15,a2a5=54,公差d<0.(I)求数列{an}的通项公式an;(II)求数列的前n项和Sn的最大值及相应的n的值.
已知等比数列的公比为,是的前项和.(1)若,,求的值;(2)若,,有无最值?并说明理由;(3)设,若首项和都是正整数,满足不等式:,且对于任意正整数有成立,问:这样的数列有几个?
对定义在区间上的函数,若存在闭区间和常数,使得对任意的,都有,且对任意的都有恒成立,则称函数为区间上的“型”函数.(1)求证:函数是上的“型”函数;(2)设是(1)中的“型”函数,若不等式对一切的恒成立,求实数的取值范围;(3)若函数是区间上的“型”函数,求实数和的值.