“三宁”公司扩建,某项工程招标时,工程领导小组接到了甲、乙两个工程队的投标书,甲工程队施工一天需付工程款2万元,乙工程队施工一天需付工程款1.2万元,工程领导小组根据甲、乙两队的投标书测算,得到以下三种方案:方案①:由甲工程队单独完成这项工程,刚好如期完成;方案②:由乙工程队单独完成这项工程,要比规定日期多5天;方案③:由甲、乙两队合作4天,余下的工程由乙工程队单独做,也正好如期完成;(1)求规定的日期是多少天?(2)在不耽误工期的前提下,你觉得哪种方案最省钱?请说明理由。
如图,已知,点在边上.请用尺规作图法求作,使与边相切.(保留作图痕迹,不写作法)
问题提出
(1)如图①,在中,,,则的外接圆半径的值为 .
问题探究
(2)如图②,的半径为13,弦,是的中点,是上一动点,求的最大值.
问题解决
(3)如图③所示,、、是某新区的三条规划路,其中,,,所对的圆心角为,新区管委会想在路边建物资总站点,在,路边分别建物资分站点、,也就是,分别在、线段和上选取点、、.由于总站工作人员每天都要将物资在各物资站点间按的路径进行运输,因此,要在各物资站点之间规划道路、和.为了快捷、环保和节约成本.要使得线段、、之和最短,试求的最小值.(各物资站点与所在道路之间的距离、路宽均忽略不计)
已知抛物线与轴相交于、两点(点在点的左侧),并与轴相交于点.
(1)求、、三点的坐标,并求的面积;
(2)将抛物线向左或向右平移,得到抛物线,且与轴相交于、两点(点在点的左侧),并与轴相交于点,要使△和的面积相等,求所有满足条件的抛物线的函数表达式.
如图,在中,,以斜边上的中线为直径作,分别与、交于点、.
(1)过点作的切线与相交于点,求证:;
(2)连接,求证:.
如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形的圆心角为.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止).
(1)转动转盘一次,求转出的数字是的概率;
(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.