已知函数f(x)=,g(x)=2|x|+a.(1)当a=0时,解不等式f(x)≥g(x);(2)若存在x∈ R,使得f(x)≥g(x)成立,求实数a的取值范围.
(本小题满分14分)已知向量,其中,函数. (1)求的对称中心; (2)若,其中,求的值.
已知函数. (Ⅰ)当时,求函数的单调区间; (Ⅱ)是否存在实数,使得函数有唯一的极值,且极值大于?若存在,,求的取值 范围;若不存在,说明理由; (Ⅲ)如果对,总有,则称是的凸 函数,如果对,总有,则称是的凹函数.当时,利用定义分析的凹凸性,并加以证明。
设椭圆的离心率右焦点到直线的距离,为坐标原点。 (Ⅰ)求椭圆的方程; (Ⅱ)过点作两条互相垂直的射线,与椭圆分别交于两点,证明点到直线的距离为定值,并求弦长度的最小值.
如图多面体PQABCD由各棱长均为2的正四面体和正四棱锥拼接而成 (Ⅰ)证明PQ⊥BC; (Ⅱ)若M为棱CQ上的点且, 求的取值范围,使得二面角P-AD-M为钝二面角。
已知等差数列的前项和为,等比数列的前项和为,它们满足,,,且当时,取得最小值. (Ⅰ)求数列、的通项公式; (Ⅱ)令,如果是单调数列,求实数的取值范围.