某地方政府准备在一块面积足够大的荒地上建一如图所示的一个矩形综合性休闲广场,其总面积为3000平方米,其中场地四周(阴影部分)为通道,通道宽度均为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为平方米.(1)分别写出用表示和用表示的函数关系式(写出函数定义域);(2)怎样设计能使S取得最大值,最大值为多少?
如图:直三棱柱油箱底面的面积是,、、是三条侧棱上的小孔(其面积忽略不计),,,若允许油箱倾斜,求这个油箱的最大容积。
设,是函数()的两个极值点,且.(1)求证:;(2)求证:;(3)若函数,求证:当且时,.
把表示成个连续正整数的和,求项数的最大值.
某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,求不同的安排方案种数.
(理)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知函数是图像上的两点,横坐标为的点满足(为坐标原点).(1)求证:为定值;(2)若,求的值;(3)在(2)的条件下,若,为数列的前项和,若对一切都成立,试求实数的取值范围.