某地方政府准备在一块面积足够大的荒地上建一如图所示的一个矩形综合性休闲广场,其总面积为3000平方米,其中场地四周(阴影部分)为通道,通道宽度均为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为平方米.(1)分别写出用表示和用表示的函数关系式(写出函数定义域);(2)怎样设计能使S取得最大值,最大值为多少?
(本小题满分12分)设圆C:,此圆与抛物线有四个不同的交点,若在轴上方的两交点分别为,,坐标原点为,的面积为。 (1)求实数的取值范围; (2)求关于的函数的表达式及的取值范围。
(本小题满分12分)在三棱锥中,是边长为4的正三角形,,,、分别是、的中点; (1)证明:平面平面; (2)求直线与平面所成角的正弦值。
(本小题满分12分)已知为坐标原点,向量,,点是直线上一点,且; (1)设函数, ,讨论的单调性,并求其值域; (2)若点、、共线,求的值。
(本小题满分12分)某班从6名班干部中(男生4人,女生2人)选3人参加学校义务劳动;(1)求男生甲或女生乙被选中的概率; (2)在男生甲被选中的情况下,求女生乙也被选中的概率; (3)设所选3人中女生人数为,求的分布列及数学期望。
在直角坐标系xOy中,以O为圆心的圆与直线相切。 (1)求圆O的方程。 (2)圆O与x轴相交于A、B两点,圆O内的动点P使|PA|,|PO|,|PB|成等比数列,求·的取值范围.